Abstract

The distributed position and orientation system (POS) uses transfer alignment to accurately measure multi-node time-spatial reference information, which is necessary for compensating the motion error of imaging sensors used in aerial surveys. Lever-arm deformation in transfer alignment will result in time-varying covariance of measurement noise, which decreases the estimation accuracy. To address this problem, a second-order adaptive divided difference two-filter smoother (ADDTFS) is proposed for transfer alignment. The second-order adaptive divided difference filter (ADDF2) severs as the forward filter to address nonlinearity in the system. The ADDF2 can estimate the measurement noise covariance in real time based on adaptive estimation using innovation information. The weighted statistical linear regression formulation is used in the backward filter to independently estimate the states and error covariance matrices. Then the forward and backward results are combined, to obtain high-precision estimation results in post-processing. Finally, the vehicle experiment results show that the proposed method can improve the attitude precision of transfer alignment in a distributed POS by 27.84%, which has been successfully applied to motion compensation of airborne interferometric synthetic aperture radar (InSAR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.