Abstract

Atmospheric turbulence is a major challenge for practical orbital angular momentum (OAM)-based free-space optical (FSO) communication systems that causes intermodal crosstalk and degrades the performance of the system. Herein, we propose a hybrid input-output algorithm (HIOA)-based adaptive optics (AO) system to compensate for distorted OAM beams. The principle and parameters of the HIOA-based AO system in an OAM-based FSO system are analyzed, and the performance is discussed. The simulation results indicate that the HIOA-based AO system can effectively correct distorted OAM beams and that the HIOA improves the compensation performance and convergence speed compared to the traditional Gerchberg-Saxton algorithm. Moreover, we analyze the compensation performance based on different probe beams. Using an OAM beam with state l=1 as a probe beam can yield better correction effects than a Gaussian beam. This work verifies the feasibility of using an HIOA for adaptive turbulence compensation and provides new insights into OAM communication systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.