Abstract

Adaptive treadmills (ATM) designed to promote increased propulsion may be an effective tool for gait training since propulsion is often impaired post-stroke. Our lab developed a novel ATM controller that adjusts belt speed via real-time changes in step length, propulsive impulse, and position. This study modified the relative importance of propulsion to step length in the controller to determine the effect of increased propulsive feedback gain on measures of propulsion and walking speed. Twenty-two participants completed five trials at their self-selected speed, each with a unique ATM controller. Walking speed, peak AGRF and PGRF, and AGRF, PGRF, and net impulse were compared between the modifications using one-way repeated measures ANOVAs at a significance level of 0.05. Participants chose similar walking speeds across all conditions (all p > 0.2730). There were no significant differences in peak AGRF (p = 0.1956) or PGRF (p = 0.5159) between conditions. AGRF impulse significantly increased as the gain on the propulsive impulse term was increased relative to the gain on step length (p < 0.0001) while PGRF and net impulse were similar across all conditions (p = 0.5487). Increasing the propulsive impulse gain essentially alters the treadmill environment by providing a controlled amount of resistance to increases in propulsive forces. Our findings demonstrate that the ATM can be modified to promote increased propulsive impulse while maintaining a consistent walking speed. Since increasing propulsion is a common goal of post-stroke gait training, these ATM modifications may improve the efficacy of the ATM for gait rehabilitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call