Abstract

Since the passive sensor has the property that it does not radiate signals, the use of passive sensors for target tracking is beneficial to improve the low probability of intercept (LPI) performance of the combat platform. However, for the high-maneuvering targets, its motion mode is unknown in advance, so the passive target tracking algorithm using a fixed motion model or interactive multi-model cannot match the actual motion mode of the maneuvering target. In order to solve the problem of low tracking accuracy caused by the unknown motion model of high-maneuvering targets, this paper firstly proposes a state transition matrix update-based extended Kalman filter (STMU-EKF) passive tracking algorithm. In this algorithm, the multi-feature fusion-based trajectory clustering is proposed to estimate the target state, and the state transition matrix is updated according to the estimated value of the motion model and the observation value of multi-station passive sensors. On this basis, considering that only using passive sensors for target tracking cannot often meet the requirements of high target tracking accuracy, this paper introduces active radar for indirect radiation and proposes a multi-sensor collaborative management model based on trajectory clustering. The model performs the optimal allocation of active radar and passive sensors by judging the accumulated errors of the eigenvalue of the error covariance matrix and makes the decision to update the state transition matrix according to the magnitude of the fluctuation parameter of the error difference between the prediction value and the observation value. The simulation results verify that the proposed multi-sensor collaborative target tracking algorithm can effectively improve the high-maneuvering target tracking accuracy to satisfy the radar’s LPI performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.