Abstract

AbstractIn this paper, we present a matrix‐type adaptive tracking control scheme for a stochastic regression system with multi‐threshold quantized observations and observation uncertainty. This observation uncertainty is described by an additive random noise, whose variance could be a polynomial‐type rate of increase and tends to infinity. Our method, first, to handle simultaneously parameter uncertainty, quantized observation, and observation uncertainty, incorporates an online stochastic approximation‐type parameter identification algorithm. Second, based on the above identification algorithm, we construct a matrix‐type adaptive tracking control law by the certainty equivalence principle. In addition, under suitable conditions, the above identification algorithm and matrix‐type adaptive tracking control law in the mean square sense can ensure that the estimations of the unknown parameters converge to the true values and achieve asymptotically optimal tracking of the periodic reference signal, respectively. To characterize the effect of observation uncertainty on the convergence speed of the identification algorithm in the mean square sense, a quantitative relationship between observation uncertainty and the convergence speed is proposed. Finally, the effectiveness of the proposed matrix‐type adaptive tracking control scheme is verified through a simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.