Abstract

This paper considers the trajectory tracking problem for uncertain robot manipulators and proposes two adaptive controllers as solutions to this problem. The first controller is derived under the assumption that the manipulator state is measurable, while the second strategy is developed for those applications in which only position measurements are available. The adaptive schemes are very general and computationally efficient since they do not require knowledge of either the mathematical model or the parameter values of the manipulator dynamics, and are implemented without calculation of the robot inverse dynamics or inverse kinematic transformation. It is shown that the control strategies ensure uniform boundedness of all signals in the presence of bounded disturbances, and that the ultimate size of the tracking errors can be made arbitrarily small. Experimental results are presented for a PUMA 560 manipulator and demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed controllers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call