Abstract

In this paper, an adaptive tracking control problem is studied for a class of switched stochastic nonlinear pure-feedback systems with unknown backlash-like hysteresis under arbitrary switching. The mean-value theorem is used to overcome the difficulty arising from the pure-feedback structure. Based on neural networks’ approximation capability, an adaptive tracking control approach is developed via the adaptive backstepping technique and common Lyapunov function method. It is proved that the proposed control scheme can guarantee that all signals in the closed-loop system are semi-globally uniformly ultimately bounded in probability and the tracking error converges to an adjustable neighborhood of the origin. Finally, a simulation example further shows the effectiveness of the presented control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.