Abstract
The purposed of hyperspectral unmixing is to estimate the spectral signatures composing the data (endmembers) and their abundance fractions. However, most of the traditional sparse unmixing methods are effective in the case of high signal-to-noise ratio (SNR), but is not good in the case of high noise. In order to solve this problem, we innovatively integrates adaptive total variation (ATV) regularization into hyperspectral sparse unmixing and propose a new hyperspectal sparse unmixing model named adaptive total variation regularized for sparse unmixing (SU_ATV). The model can adaptively adjust the horizontal difference and vertical difference of TV, can better optimize the efficiency of TV to improve the anti-noise performance. The experimental results show that SU_ATV has good anti-noise performance to the sparse unmixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.