Abstract

In this paper, we will present advanced discretization methods for solving retarded potential integral equations. We employ a \(C^{\infty }\)-partition of unity method in time and a conventional boundary element method for the spatial discretization. One essential point for the algorithmic realization is the development of an efficient method for approximation the elements of the arising system matrix. We present here an approach which is based on quadrature for (non-analytic) \(C^{\infty }\) functions in combination with certain Chebyshev expansions. Furthermore we introduce an a posteriori error estimator for the time discretization which is employed also as an error indicator for adaptive refinement. Numerical experiments show the fast convergence of the proposed quadrature method and the efficiency of the adaptive solution process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.