Abstract

Functional connectivity (FC) networks based on functional magnetic resonance imaging (fMRI) data have been widely applied to automated identification of brain diseases, such as attention deficit hyperactivity disorder (ADHD) and Alzheimer’s disease (AD). To generate compact representations of FC networks for disease analysis, various thresholding strategies have been developed for analyzing brain FC networks. However, existing studies typically employ predefined values or percentages of connections to threshold the whole FC networks, thus ignoring the diversity of temporal correlations (particularly strong correlations) among different brain regions. In addition, in practice, it is usually very challenging to decide the optimal threshold or connection percentage in FC network analysis. To address these problems, in this paper, we propose a weight distribution based thresholding (WDT) method for FC network analysis with resting-state function MRI data. Specifically, for FC between a pair of brain regions, we calculate its optimal threshold value by using the weight (i.e., temporal correlation) distributions of the FC across two subject groups (i.e., patient and normal groups). The proposed WDT method can adaptively yields FC-specific thresholds, thus preserving the diversity information of FCs among different brain regions. Experiment results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate the effectiveness of our proposed WDT method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.