Abstract

This article presents a tetrahedral mesh adaptivity algorithm for three‐dimensional elliptic partial differential equations (PDEs) using finite element methods. The main issues involved are the mesh size and mesh quality, which have great influence on the accuracy of the numerical solution and computational cost. The first issue is addressed by a posteriori error estimator based on superconvergent gradient recovery. The second issue is solved by constrained centroidal Voronoi–Delaunay tessellations (CCVDT), which guarantees good quality tetrahedrons over a large class of mesh domains even, if the grid size varies a lot at any particular refinement level. The CCVDT enjoys the energy equidistribution property so that the errors are very well equidistributed with properly chosen sizing field (density function). And with this good property, a new refinement criteria is raised which is different from the traditional bisection refinement. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1633–1653, 2014

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.