Abstract

In this paper, the task-space cooperative tracking control problem of networked robotic manipulators without task-space velocity measurements is addressed. To overcome the problem without task-space velocity measurements, a novel task-space position observer is designed to update the estimated task-space position and to simultaneously provide the estimated task-space velocity, based on which an adaptive cooperative tracking controller without task-space velocity measurements is presented by introducing new estimated task-space reference velocity and acceleration. Furthermore, adaptive laws are provided to cope with uncertain kinematics and dynamics and rigorous stability analysis is given to show asymptotical convergence of the task-space tracking and synchronization errors in the presence of communication delays under strongly connected directed graphs. Simulation results are given to demonstrate the performance of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.