Abstract

In this paper, we present an adaptive organizational policy for multi-agent systems called \acro{trace}. \acro{trace} allows a collection of multi-agent organizations to dynamically allocate tasks and resources between themselves in order to efficiently process an incoming stream of task requests. \acro{trace} is intended to cope with environments in which tasks have time constraints, and environments that are subject to load variations. \acro{trace} is made up of two key elements: the task allocation protocol (\acro{tap}) and the resource allocation protocol (\acro{rap}). The \acro{tap} allows agents to cooperatively allocate their tasks to other agents with the capability and opportunity to successfully carry them out. As requests arrive arbitrarily, at any instant, some organizations could have surplus resources while others could become overloaded. In order to minimize the number of lost requests caused by an overload, the allocation of resources to organizations is changed dynamically by the resource allocation protocol (\acro{rap}), which uses ideas from computational market systems to allocate resources (in the form of problem solving agents) to organizations. We begin by formally defining the task allocation problem, and show that it is \acro{NP}-complete, and hence that centralized solutions to the problem are unlikely to be feasible. We then introduce the task and resource allocation protocols, focussing on the way in which resources are allocated by the \acro{rap}. We then present some experimental results, which show that \acro{trace} exhibits high performance despite unanticipated changes in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.