Abstract

Task based approaches with dynamic load balancing are well suited to exploit parallelism in irregular applications. For such applications, the execution time of tasks can often not be predicted due to input dependencies. Therefore, a static task assignment to execution resources usually does not lead to the best performance. Moreover, a dynamic load balancing is also beneficial for heterogeneous execution environments. In this article a new adaptive data structure is proposed for storing and balancing a large number of tasks, allowing an efficient and flexible task management. Dynamically adjusted blocks of tasks can be moved between execution resources, enabling an efficient load balancing with low overhead, which is independent of the actual number of tasks stored. We have integrated the new approach into a runtime system for the execution of task-based applications for shared address spaces. Runtime experiments with several irregular applications with different execution schemes show that the new adaptive runtime system leads to good performance also in such situations where other approaches fail to achieve comparable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.