Abstract

This article considers target separation detection (TSD) in the presence of homogeneous Gaussian interference. The problem is formulated as a hypothesis test for two typical situations: 1) the use of a low range-resolution radar or fast-track update rate; 2) the use of a high-resolution radar or low-track update rate. At the design stage, TSD tests are devised according to the generalized likelihood ratio test criterion. The computation of each decision statistic requires the solution of a semidefinite programming problem obtained leveraging the relationship among linear matrix inequalities and nonnegative trigonometric polynomials. All the obtained decision rules ensure the bounded constant false alarm rate property. At the analysis stage, the performance of some benchmark detectors is given in terms of detection and false alarm probabilities. Finally, numerical examples are provided to show the performance of the proposed tests as compared with the benchmarks as well as the gain achievable over some counterparts devised to monitor a separation event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.