Abstract

In this paper, an adaptive synchronization sliding mode control is proposed for a dual-arm robot against parameter variations, external disturbance, and unknown control directions. The proposed control is designed by using cross-coupling error and sliding mode control to guarantee the position synchronization of the dual-arm manipulator. The control objective of the proposed control is to synchronize the movement of both arms beside the trajectory tracking issue. In order to manage the lumped uncertainties caused by the parameter variations, external disturbance, and unknown control directions, an extended state observer is used in the proposed control. It enhances the stability of the controlled system against uncertainties. Additionally, a Nussbaum gain function is integrated into the control algorithm to deal with the issue of unknown control direction. Lyapunov stability theory is used to demonstrate the stability of the controlled system. Finally, some simulations are implemented in MATLAB Simulink with a dual 3-DOF manipulator system. The results of the proposed control are compared to other controllers to verify its effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call