Abstract

The cortical learning algorithm (CLA) is a time-series data prediction method that is designed based on the human neocortex. The CLA has multiple columns that are associated with the input data bits by synapses. The input data is then converted into an internal column representation based on the synapse relation. Because the synapse relation between the columns and input data bits is fixed during the entire prediction process in the conventional CLA, it cannot adapt to input data biases. Consequently, columns not used for internal representations arise, resulting in a low prediction accuracy in the conventional CLA. To improve the prediction accuracy of the CLA, we propose a CLA that self-adaptively arranges the column synapses according to the input data tendencies and verify its effectiveness with several artificial time-series data and real-world electricity load prediction data from New York City. Experimental results show that the proposed CLA achieves higher prediction accuracy than the conventional CLA and LSTMs with different network optimization algorithms by arranging column synapses according to the input data tendency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.