Abstract

SummarySince the introduction of fractional‐order differential equations, there has been much research interest in synthesis and control of oscillatory, periodic, and chaotic fractional‐order dynamical systems. Therefore, in this article, the problem of stabilization and control of nonlinear three‐dimensional perturbed fractional nonlinear systems is considered. The major novelty of this article is handling partially unknown dynamics of nonlinear fractional‐order systems, as well as coping with input saturation along the existence of model variations and high‐frequency sensor noises via just one control input. The method supposes no known knowledge on the upper bounds of the uncertainties and perturbations. It is assumed that the working region of the input saturation function is also unknown. After the introduction of a simple finite‐time stable nonlinear sliding manifold, an adaptive control technique is used to reach the system variables to the sliding surface. Rigorous stability discussions are adopted to prove the convergence of the developed sliding mode controller. The findings of this research are illustrated using providing computer simulations for the control problem of the chaotic unified system and the fractional Chua's circuit model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call