Abstract
Swarm intelligence inspired by the social behavior of ants boasts a number of attractive features, including adaptation, robustness and distributed, decentralized nature, which are well suited for routing in modern communication networks. This paper describes an adaptive swarm-based routing algorithm that increases convergence speed, reduces routing instabilities and oscillations by using a novel variation of reinforcement learning and a technique called momentum. Experiment on the dynamic network showed that adaptive swarm-based routing learns the optimum routing in terms of convergence speed and average packet latency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Zhejiang University SCIENCE
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.