Abstract

This paper presents a multi-resolutional surface deformable model with physical property adjustment scheme and shape-preserving springs to represent surface-deformable objects efficiently and robustly. In order to reduce the computational complexity while ensuring the same global volumetric behaviour for the deformable object, we introduce a multi-resolutional mass-spring model that is locally refined using the modified-butterfly subdivision scheme. For robust deformation, a shape-preserving spring, which helps to restore the model to the original shape, is proposed to reduce the animation instability. Volume and shape preservation is indirectly achieved by restoring the model to the original shape without computing the actual volume and associated forces at every iteration. Most existing methods concentrate on visual realism of multi-resolutional deformation and often neglect to maintain the dynamic behavioural integrity between detail levels. In order to preserve overall physical behaviour, we present a new scheme for adjusting physical properties between different levels of details. During the animation of deformable objects, the part of the object under external forces beyond a threshold or with large surface curvature variations is refined with a higher level of detail. The physical properties of nodes and springs in the locally refined area are adjusted in order to preserve the total mass and global behaviour of the object. The adequacy of the proposed scheme was analysed with tests using practical mesh examples. Experimental results demonstrate improved efficiency in object deformation and preservation of overall behaviour between different levels. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.