Abstract

It is hard to construct an optimal classifier for high-dimensional imbalanced data, on which the performance of classifiers is seriously affected and becomes poor. Although many approaches, such as resampling, cost-sensitive, and ensemble learning methods, have been proposed to deal with the skewed data, they are constrained by high-dimensional data with noise and redundancy. In this study, we propose an adaptive subspace optimization ensemble method (ASOEM) for high-dimensional imbalanced data classification to overcome the above limitations. To construct accurate and diverse base classifiers, a novel adaptive subspace optimization (ASO) method based on adaptive subspace generation (ASG) process and rotated subspace optimization (RSO) process is designed to generate multiple robust and discriminative subspaces. Then a resampling scheme is applied on the optimized subspace to build a class-balanced data for each base classifier. To verify the effectiveness, our ASOEM is implemented based on different resampling strategies on 24 real-world high-dimensional imbalanced datasets. Experimental results demonstrate that our proposed methods outperform other mainstream imbalance learning approaches and classifier ensemble methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call