Abstract

Consider a set A=(A/sub 1/,A/sub 2/,. . ., A/sub n/) of records, where each record is identified by a unique key. The records are accessed based on a set of access probabilities S=(s/sub 1/,s/sub 2/,. . ., s/sub N/) and are to be arranged lexicographically using a binary search tree (BST). If S is known a priori, it is well known that an optimal BST may be constructed using A and S. The case when S is not known a priori is considered. A new restructuring heuristic is introduced that requires three extra integer memory locations per record. In this scheme, the restructuring is performed only if it decreases the weighted path length (WPL) of the overall resultant tree. An optimized version of the latter method, which requires only one extra integer field per record has, is presented. Initial simulation results comparing this algorithm with various other static and dynamic schemes indicates that this scheme asymptotically produces trees which are an order of magnitude closer to the optimal one than those produced by many of the other BST schemes reported in the literature.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call