Abstract
Lightning shielding failure accounts for the highest proportion of lightning accidents for transmission systems above 500 kV. The leader propagation model (LPM) was found to be effective in the analysis of lightning shielding failure of high-voltage transmission lines, especially for the ultrahigh voltage (UHV) transmission systems. However, it was generally inefficient to calculate the shielding failure rate by LPM, since the progress of lightning development must be simulated repeatedly, which is time-consuming, and no adaptive implementation of LPM has been reported. In this paper, adaptive strategies to accelerate the computation of shielding failure analysis by LPM were proposed, which include the adaptive time step control according to the electric field at the conductor surface, non-uniform lightning current sampling based on the lightning current amplitude probability distribution, and the adaptive lightning location sampling based on recursive adaptive Simpson’s method. The analysis results were validated by the field data of the UHV transmission line in Japan, and the efficiency of the adaptive strategies was shown by the shielding failure analysis of a typical 500 kV ac transmission line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.