Abstract

Stock trading is an important decision-making problem that involves both stock selection and asset management. Though many promising results have been reported for predicting prices, selecting stocks, and managing assets using machine-learning techniques, considering all of them is challenging because of their complexity. In this paper, we present a new stock trading method that incorporates dynamic asset allocation in a reinforcement-learning framework. The proposed asset allocation strategy, called meta policy (MP), is designed to utilize the temporal information from both stock recommendations and the ratio of the stock fund over the asset. Local traders are constructed with pattern-based multiple predictors, and used to decide the purchase money per recommendation. Formulating the MP in the reinforcement learning framework is achieved by a compact design of the environment and the learning agent. Experimental results using the Korean stock market show that the proposed MP method outperforms other fixed asset-allocation strategies, and reduces the risks inherent in local traders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.