Abstract
Noise can improve how memoryless neurons process signals and maximize their throughput information. Such favorable use of noise is the so-called "stochastic resonance" or SR effect at the level of threshold neurons and continuous neurons. This paper presents theoretical and simulation evidence that 1) lone noisy threshold and continuous neurons exhibit the SR effect in terms of the mutual information between random input and output sequences, 2) a new statistically robust learning law can find this entropy-optimal noise level, and 3) the adaptive SR effect is robust against highly impulsive noise with infinite variance. Histograms estimate the relevant probability density functions at each learning iteration. A theorem shows that almost all noise probability density functions produce some SR effect in threshold neurons even if the noise is impulsive and has infinite variance. The optimal noise level in threshold neurons also behaves nonlinearly as the input signal amplitude increases. Simulations further show that the SR effect persists for several sigmoidal neurons and for Gaussian radial-basis-function neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.