Abstract

In this paper, we propose an adaptive scheme for the stabilization and synchronization of chaotic Lur'e systems with time-varying delay. Based on the invariant principle of functional differential equations, the strength of the feedback controller is enhanced adaptively to stabilize and synchronize chaotic Lur'e systems. The derivative-constraint that the time-varying delay is required to be differentiable and its derivation is less than one can be removed by using LaSalle-Razumikhin-type theorems. The time-varying delay is allowed to be bounded without any additional constraint or unbounded with derivative-constraint. This method is analytical, rigorous and simple to implement in practice. In addition, it is quite robust against the effect of parameters uncertainty and noise. Two examples are provided to show the effectiveness of the proposed scheme. The results of the paper demonstrate the fruitfulness of the modern feedback and adaptive control theory application to the stabilization and synchronization problems for delayed chaotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.