Abstract

Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.

Highlights

  • The essential computation performed by neurons is the integration of synaptic inputs and subsequent generation of a spike

  • We find that this so called adaptive threshold allows neurons to be more focused on inputs which arrive close in time

  • We investigate how the state of the neuron influences the response behavior using both recordings from barrel cortex as well as neuronal simulations

Read more

Summary

Introduction

The essential computation performed by neurons is the (non-linear) integration of synaptic inputs and subsequent generation of a spike. This summation is determined by multiple factors, including the passive membrane properties, active currents, and the neuronal geometry [1,2,3]. The relationship is monotonically decreasing over a range of a few millivolts. This phenomenon is qualitatively different from the thoroughly studied spike-frequency adaptation, which acts on longer time scales [11,12,13] and depends on suprathreshold activity. The effects of the adaptation investigated here, will manifest already before the ‘first’ spike, e.g. at response onset

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.