Abstract
With the advancement of computer vision, object trackers based on discriminative correlation filters (DCF) have demonstrated superior performance and accuracy compared to traditional trackers. However, most existing DCF-based trackers are easily affected by various factors, such as cluttered background, illumination variations, occlusions, rotations etc. Therefore, in order to accurately track the target, further investigation into the characteristics of the correlation filter is required. In this study, we propose an adaptive spatial-temporal surrounding-aware correlation filter tracker via the ensemble learning (ASTSAELT) technique. Specifically, the adaptive spatial-temporal regularized correlation filter to remove the boundary effects and temporal degradation is presented. And then, a method of extracting surrounding samples according to the size and shape of the tracking object, designed to preserve the integrity of the object, is proposed. Moreover, our tracker utilizes a multi-expert tracking framework to improve its performance by integrating both handcrafted features and deep convolutional layer features. And then, the update strategy is proposed to measure the reliability of the current tracking result and mitigate model corruption. Finally, numerous experiments on visual tracking benchmarks including OTB2013, OTB2015, TempleColor128, UAV123, UAVDT and DTB70 are implemented to verify the developed method achieves superior performance compared with several state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.