Abstract

Fluorescence molecular tomography (FMT) is a highly sensitive and noninvasive optical imaging technique which has been widely applied to disease diagnosis and drug discovery. However, FMT reconstruction is a highly ill-posed problem. In this work, L0-norm regularization is employed to construct the mathematical model of the inverse problem of FMT. And an adaptive sparsity orthogonal least square with a neighbor strategy (ASOLS-NS) is proposed to solve this model. This algorithm can provide an adaptive sparsity and can establish the candidate sets by a novel neighbor expansion strategy for the orthogonal least square (OLS) algorithm. Numerical simulation experiments have shown that the ASOLS-NS improves the reconstruction of images, especially for the double targets reconstruction.Clinical relevance- The purpose of this work is to improve the reconstruction results of FMT. Current experiments are focused on simulation experiments, and the proposed algorithm will be applied to the clinical tumor detection in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call