Abstract
This paper proposes a new random-access protocol over 2 times <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</i> multiple-input-multiple-output (MIMO) multiaccess channels, namely, adaptive space-time diversity slotted ALOHA (ASTDSA), to address the issues on collision diversity while maintaining implementation simplicity. The proposed scheme exploits the advantages of both V-BLAST and Alamouti space-time block coding (STBC). In particular, it adaptively only transmits space-time-coded copies to remediable collisions. The coded replicas contain the same information as the packets involved in collisions and are immediately sent after a colliding slot. Combining the packets received in two consecutive slots, the Alamouti STBC scheme can be reconstructed to linearly resolve the collision without sacrificing the space-time diversity gain. An embedded Markov chain is developed to derive performance metrics with respect to throughput, diversity gain, delay, and stability. The tradeoff among those metrics is investigated. The results demonstrate that ASTDSA significantly outperforms the existing schemes, and simulations are used to validate the analytical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.