Abstract

Mobile robot olfaction of toxic and hazardous odor sources is of great significance in anti-terrorism, disaster prevention, and control scenarios. Aiming at the problems of low search efficiency and easily falling into a local optimum of the current odor source localization strategies, the paper proposes the adaptive space-aware Infotaxis II algorithm. To improve the tracking efficiency of robots, a new reward function is designed by considering the space information and emphasizing the exploration behavior of robots. Considering the enhancement in exploratory behavior, an adaptive navigation-updated mechanism is proposed to adjust the movement range of robots in real time through information entropy to avoid an excessive exploration behavior during the search process, which may lead the robot to fall into a local optimum. Subsequently, an improved adaptive cosine salp swarm algorithm is applied to confirm the optimal information adaptive parameter. Comparative simulation experiments between ASAInfotaxis II and the classical search strategies are carried out in 2D and 3D scenarios regarding the search efficiency and search behavior, which show that ASAInfotaxis II is competent to improve the search efficiency to a larger extent and achieves a better balance between exploration and exploitation behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call