Abstract
Heart sounds are difficult to interpret due to events with very short temporal onset between them (tens of milliseconds) and dominant frequencies that are out of the human audible spectrum. Computer-assisted decision systems may help but they require robust signal processing algorithms. In this paper, we propose a new algorithm for heart sound segmentation using a hidden semi-Markov model. The proposed algorithm infers more suitable sojourn time parameters than those currently suggested by the state of the art, through a maximum likelihood approach. We test our approach over three different datasets, including the publicly available PhysioNet and Pascal datasets. We also release a pediatric dataset composed of 29 heart sounds. In contrast with any other dataset available online, the annotations of the heart sounds in the released dataset contain information about the beginning and the ending of each heart sound event. Annotations were made by two cardiopulmonologists. The proposed algorithm is compared with the current state of the art. The results show a significant increase in segmentation performance, regardless the dataset or the methodology presented. For example, when using the PhysioNet dataset to train and to evaluate the HSMMs, our algorithm achieved average an F-score of [Formula: see text] compared to [Formula: see text] achieved by the algorithm described in [D.B. Springer, L. Tarassenko, and G. D. Clifford, "Logistic regressionHSMM-based heart sound segmentation," IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp.822-832, 2016]. In this sense, the proposed approach to adapt sojourn time parameters represents an effective solution for heart sound segmentation problems, even when the training data does not perfectly express the variability of the testing data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.