Abstract

Software Transactional Memory (STM) is a generic synchronization construct that enables automatic conversion of correct sequential objects into correct nonblocking concurrent objects. Recent STM systems, though significantly more practical than their predecessors, display inconsistent performance: differing design decisions cause different systems to perform best in different circumstances, often by dramatic margins. In this paper we consider four dimensions of the STM design space: (i) when concurrent objects are acquired by transactions for modification; (ii) how they are acquired; (iii) what they look like when not acquired; and (iv) the non-blocking semantics for transactions (lock-freedom vs. obstruction-freedom). In this 4-dimensional space we highlight the locations of two leading STM systems: the DSTM of Herlihy et al. and the OSTM of Fraser and Harris. Drawing motivation from the performance of a series of application benchmarks, we then present a new Adaptive STM (ASTM) system that adjusts to the offered workload, allowing it to match the performance of the best known existing system on every tested workload.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.