Abstract
Electric springs (ESs) are novel electric-power devices that alleviate power-quality problems such as voltage fluctuations induced by grid access to renewable energy resources. However, with the continuous increase of uncertain factors such as parameter perturbation and external disturbance, the environment becomes more complicated, so traditional linear controllers for ESs are finding it increasingly difficult to meet the control requirements due to narrow stability regions, low precision, and poor robustness. To overcome this problem, we propose herein a control method that combines adaptive control and sliding-mode control and apply it to ESs. First, an inexact model of the ES system was established and analyzed. Next, an ES control system was designed based on adaptive sliding-mode control, and then the asymptotic stability of the closed-loop system is proven. Finally, the proposed control system was verified through a MATLAB simulation. The results show that adaptive sliding-mode control not only ensures the voltage stability of critical loads in the microgrid but also resists the influence of parameter perturbation and external disturbances, leading to better steady-state and dynamic performance than a linear controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.