Abstract

Linear switched reluctance actuator (LSRA) is of great potential using in kind of high-force linear applications such as automotive suspension system. In this study, an electrical controlled active suspension system is built. Bi-directional power amplifier is used to supply power to and absorb generated energy from linear actuator based on the movement requirement. The linear motions are accomplished by retracting and extending the LSRA. With regard to the established electromagnetic suspension system, a real-time control algorithm is developed. Sliding model technique with adaptive mechanism is studied to compensate the system non-linearities and external road profile. Experiments are conducted at the laboratory to present the high performance of proposed active suspension system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call