Abstract

High-precision position control has been widely used in scientific instruments and semiconductor fabrication equipment. Traditionally, controllable displacements with sub-micron and nano-level resolution are usually achieved by piezoelectric actuators because of their high bandwidth and ease of control. However, the travel range of piezoelectric actuator is usually small. In this paper, the ball-screw-driven system is studied to provide long-range and high-precision performance for positioning and tracking control. In such a system, the friction dynamics are divided into the static and the dynamic regimes to describe the dynamic behavior of a conventional ball-screw-driven x-y stage. The same form of adaptive sliding mode controllers are designed in the static and dynamic regimes to obtain the precision performance for controlled stage. A proportional-integral switching surface is proposed to make it easy to assign the performance of the systems in the sliding mode motion and the controller is robust without knowing the bound of disturbance in advance. An illustrative example is included to demonstrate that the system achieves high precision (10 nm) and long-range (10 cm) positioning performance with repeatability and robustness by the proposed control approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call