Abstract

In the field of object detection, deep learning models have achieved great success in recent years. Despite these advances, detecting small objects remains difficult. Most objects in aerial images have features that are a challenge for traditional object detection techniques, including small size, high density, high variability, and varying orientation. Previous approaches have used slicing methods on high-resolution images or feature maps to improve performance. However, existing slicing methods inevitably lead to redundant computation. Therefore, in this article we present a novel adaptive slicing method named ASAHI (Adaptive Slicing Aided Hyper Inference), which can dramatically reduce redundant computation using an adaptive slicing size. Specifically, ASAHI focuses on the number of slices rather than the slicing size, that is, it adaptively adjusts the slicing size to control the number of slices according to the image resolution. Additionally, we replace the standard non-maximum suppression technique with Cluster-DIoU-NMS due to its improved accuracy and inference speed in the post-processing stage. In extensive experiments, ASAHI achieves competitive performance on the VisDrone and xView datasets. The results show that the mAP50 is increased by 0.9% and the computation time is reduced by 20–25% compared with state-of-the-art slicing methods on the TPH-YOLOV5 pretrained model. On the VisDrone2019-DET-val dataset, our mAP50 result is 56.4% higher, demonstrating the superiority of our approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call