Abstract
A dehazing method often only shows good results when processing the image for a certain haze concentration. So an adaptive hazy image dehazing method based on SVM is proposed. The innovation points are as follows: Firstly, combining the characteristics of the degraded images of haze weather, the dark channel histogram and texture features of the input images are extracted to form the feature vectors. These are trained by supervised learning through SVM algorithm to realize automatic binary classification of images; Secondly, the defined dehazing methods are called to process the classified result as a hazy image and the same quality evaluation indexes are used to evaluate each image output by different dehazing methods. Then, it outputs the highest evaluation image after haze removal. Finally, the output image is classified again by SVM until the image reaches the clearest it can be. The experimental results show that the proposed algorithm exhibits good contrast, brightness and color saturation from the visual effect. Also the scene adaptability and robustness of the algorithm are improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.