Abstract
ABSTRACTVector autoregressive (VAR) models are frequently used for forecasting and impulse response analysis. For both applications, shrinkage priors can help improving inference. In this article, we apply the Normal-Gamma shrinkage prior to the VAR with stochastic volatility case and derive its relevant conditional posterior distributions. This framework imposes a set of normally distributed priors on the autoregressive coefficients and the covariance parameters of the VAR along with Gamma priors on a set of local and global prior scaling parameters. In a second step, we modify this prior setup by introducing another layer of shrinkage with scaling parameters that push certain regions of the parameter space to zero. Two simulation exercises show that the proposed framework yields more precise estimates of model parameters and impulse response functions. In addition, a forecasting exercise applied to U.S. data shows that this prior performs well relative to other commonly used specifications in terms of point and density predictions. Finally, performing structural inference suggests that responses to monetary policy shocks appear to be reasonable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.