Abstract

When the workflow application is executed in Service-Oriented Grid (SOG), performance issues such as service scheduling should be considered, to achieve high and stable performance in execution. However, most of the prior works on workflow management neither study the performance issues nor provide evaluation methodologies on the performance of Grid Services. Therefore, it is infeasible to apply for the service scheduling problem in SOG. In this paper, we propose and model evaluation metrics for the Grid Service performance. The metrics are extracted based on common properties of Grid Services and are used to quantify and evaluate the performance of an individual Grid Service. With these metrics, we develop a service scheduling scheme with a list scheduling heuristic, to choose proper and optimal Grid Services for tasks in workflow applications. It ensures high performance in the execution of the workflow applications. In addition, we propose a low-overhead rescheduling method, referred to as Adaptive List Scheduling for Service (ALSS), to adapt to the dynamic nature of a grid environment. ALSS provides stable performance for workflow applications, even in abnormal circumstances. Finally, we design an experimental environment with actual traces and perform simulations to quantify the benefits of our approach. Throughout the experiments, we demonstrate that ALSS outperforms conventional scheduling methods. Our scheme produces a scheduling performance that is superior to AHEFT by 50.2%, SLACK by 50.8%, HEFT by 68.3%, MaxMin by 72.0%, MinMin by 71.0%, and Myopic by 69.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.