Abstract

Ambiguity function shaping continues to be one of the most challenging open problems in cognitive radar. Analytically, a complex quartic function should be optimized as a function of the radar waveform code. Practical considerations further require that the waveform be constant modulus, which exacerbates the issue and leads to a hard non-convex problem. We develop a new approach called Adaptive Sequential Refinement (ASR) to suppress the clutter returns for a desired range-Doppler, i.e. ambiguity function response. ASR solves the aforementioned optimization problem in a unique iterative manner such that the formulation is updated depending on the iteration index. We establish formally that: 1.) the problem in each step of the iteration has a closed form solution, and 2.) monotonic decrease of the cost function until convergence is guaranteed. Experimental validation shows that ASR produces a radar waveform with higher Signal to Interference Ratio (SIR) and superior ambiguity function shaping than state of the art alternatives even as its computational burden is orders of magnitude lower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.