Abstract

This paper presents an iterative adaptive approach which hybridises bin packing heuristics to assign exams to time slots and rooms. The approach combines a graph-colouring heuristic, to select an exam in every iteration, with bin-packing heuristics to automate the process of time slot and room allocation for exam timetabling problems. We start by analysing the quality of the solutions obtained by using one heuristic at a time. Depending on the individual performance of each heuristic, a random iterative hyper-heuristic is used to randomly hybridise the heuristics and produce a collection of heuristic sequences to construct solutions with different quality. Based on these sequences, we analyse the way in which the bin packing heuristics are automatically hybridised. It is observed that the performance of the heuristics used varies depending on the problem. Based on these observations, an iterative hybrid approach is developed to adaptively choose and hybridise the heuristics during solution construction. The overall aim here is to automate the heuristic design process, which draws upon an emerging research theme which is concerned with developing methods to design and adapt heuristics automatically. The approach is tested on the exam timetabling track of the second International Timetabling Competition, to evaluate its ability to generalise on instances with different features. The hyper-heuristic with low-level graph-colouring and bin-packing heuristics approach was found to generalise well over all the problem instances and performed comparably to the state of the art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.