Abstract
Sedative medications are routinely administered to provide comfort and facilitate clinical care in critically ill ICU patients. Prior work shows that brain monitoring using electroencephalography (EEG) to track sedation levels may help medical personnel to optimize drug dosing and avoid the adverse effects of oversedation and undersedation. However, the performance of sedation monitoring methods proposed to date deal poorly with individual variability across patients, leading to inconsistent performance. To address this challenge we develop an online learning approach based on Adaptive Regularization of Weight Vectors (AROW). Our approach adaptively updates a sedation level prediction algorithm under a continuously evolving data distribution. The prediction model is gradually calibrated for individual patients in response to EEG observations and routine clinical assessments over time. The evaluations are performed on a population of 172 sedated ICU patients whose sedation levels were assessed using the Richmond Agitation-Sedation Scale (scores between -5 = comatose and 0 = awake). The proposed adaptive model achieves better performance than the same model without adaptation (average accuracies with tolerance of one level difference: 68.76% vs. 61.10%). Moreover, our approach is shown to be robust to sudden changes caused by label noise. Medication administrations have different effects on model performance. We find that the model performs best in patients receiving only propofol, compared to patients receiving no sedation or multiple simultaneous sedative medications.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.