Abstract
In this paper, a novel adaptive second-order sliding mode (2-SM) control approach, based on online zero-crossing detection, was proposed to solve the problems of the chattering and fixed control gain for buck converters with multi-disturbances. In modeling, the possible parameter perturbations and external disturbances of the converter system were contained. Instead of the traditional first-order sliding mode (1-SM), the twisting algorithm with 2-SM was adopted for the controller design, which could overcome the chattering problem and realize control continuity. Meanwhile, a novel adaptive mechanism was introduced to replace the conventional fixed control gain by time-varying control gain, the idea of which is to calculate the number of the zero-crossing points of the sliding surface online. As a result, the control magnitude of the improved controller could be reduced to a minimal admissible level, and the steady error of the output voltage could converge to the expected value. Furthermore, the robust stability of the converter system with multi-disturbances wads investigated. Comparative simulations and experiments validated the advantages of this paper as offering better robustness and control performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.