Abstract

This paper considers appointment scheduling in a setting in which at every client arrival the schedule of all future clients can be adapted. Starting our analysis with an explicit treatment of the case of exponentially distributed service times, we then develop a phase-type-based approach to also cover cases in which the service times’ squared coefficient of variation differs from 1. The approach relies on dynamic programming, with the state information being the number of clients waiting, the elapsed service time of the client in service, and the number of clients still to be scheduled. The use of dynamic schedules is illustrated through a set of numerical experiments, showing (i) the effect of wrongly assuming exponentially distributed service times, and (ii) the gains (over static schedules, that is) achieved by rescheduling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.