Abstract
The Gaussian mixture model (GMM) has been widely used in brain magnetic resonance (MR) image segmentation. However, due to the MR bias field effect, the implied stochastic assumption that the intensities of each tissue type are sampled from an identical distribution may not be valid. In this paper, we propose a novel adaptive scale fuzzy local GMM (AS-FLGMM) algorithm for accurate and robust brain MR image segmentation. We assume that the local image data within the neighborhood of each pixel follow the GMM, in which the difference of variance among Gaussian components can be ignored. Based on this assumption, we develop a local scale estimation method to adaptively calculate the variance in each distribution. The segmentation is then performed under the fuzzy clustering framework and the objective is defined as the integration of the weighted GMM energy of each pixel. The AS-FLGMM algorithm has been compared to five state-of-the-art segmentation approaches in both synthetic and clinical MR images. Our results show that the proposed algorithm can produce more accurate segmentation results and its performance is more robust to initialization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.