Abstract

This paper presents a sampling-based motion planner geared towards mobile robots with differential constraints. The planner conducts the search for a trajectory to the goal region by using sampling to expand a tree of collision-free and dynamically-feasible motions. To guide the tree expansion, a workspace decomposition is used to partition the motion tree into groups. Priority is given to tree expansions from groups that are close to the goal according to the shortest-path distances in the workspace decomposition. To counterbalance the greediness of the shortest-path heuristic, when the planner fails to expand the tree from one region to the next, the costs of the corresponding edges in the workspace decomposition are increased. Such cost increases enable the planner to quickly discover alternative routes to the goal when progress along the current route becomes difficult or impossible. Comparisons to related work show significant speedups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.