Abstract

The probabilistic traveling salesman problem is a paradigmatic example of a stochastic combinatorial optimization problem. For this problem, recently an estimation-based local search algorithm using delta evaluation has been proposed. In this paper, we adopt two well-known variance reduction procedures in the estimation-based local search algorithm: the first is an adaptive sampling procedure that selects the appropriate size of the sample to be used in Monte Carlo evaluation; the second is a procedure that adopts importance sampling to reduce the variance involved in the cost estimation. We investigate several possible strategies for applying these procedures to the given problem and we identify the most effective one. Experimental results show that a particular heuristic customization of the two procedures increases significantly the effectiveness of the estimation-based local search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.