Abstract

AbstractIn this article, an adaptive safe control scheme is presented for tethered aircrafts subject to unknown disturbances, input saturations, and deferred asymmetric time‐varying output constraints. By integrating a shifting function into an asymmetric barrier Lyapunov function, the deferred asymmetric time‐varying output constraints are first solved. Then, to eliminate the conflict between input saturations and output constraints, an auxiliary system is designed to enlarge output constraint boundaries when input saturation occurs and the system has no tolerance for output constraints, which ensures system safety. Furthermore, disturbance observers are employed to estimate unknown disturbances. Finally, both theoretical proof and simulation results demonstrate the validity of the proposed control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.