Abstract

We report on the design and stability analysis of a simple quadruped running controller that can autonomously generate steady running with good energy efficiency and suppress such disturbances as irregularities of terrain. The self-stabilization property of the mechanical system is the inspirational source for our idea. We propose an original Delayed Feedback Control (DFC) approach based on measurements of the stance phase period obtained from contact sensors. Here, the DFC approach will not only stabilize running locomotion around the fixed point, but also result in transition from the stand state to the steady bounding running. Finally, we show several simulation results on different terrain (e.g., flat and step) to characterize the performance of the proposed controller. MPEG footage of simulations can be seen at: http://www.kimura.is.uec.ac.jp/running

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.